3 research outputs found

    Uncovering Multisensory Processing through Non-Invasive Brain Stimulation

    Get PDF
    Most of current knowledge about the mechanisms of multisensory integration of environmental stimuli by the human brain derives from neuroimaging experiments. However, neuroimaging studies do not always provide conclusive evidence about the causal role of a given area for multisensory interactions, since these techniques can mainly derive correlations between brain activations and behavior. Conversely, techniques of non-invasive brain stimulation (NIBS) represent a unique and powerful approach to inform models of causal relations between specific brain regions and individual cognitive and perceptual functions. Although NIBS has been widely used in cognitive neuroscience, its use in the study of multisensory processing in the human brain appears a quite novel field of research. In this paper, we review and discuss recent studies that have used two techniques of NIBS, namely transcranial magnetic stimulation and transcranial direct current stimulation, for investigating the causal involvement of unisensory and heteromodal cortical areas in multisensory processing, the effects of multisensory cues on cortical excitability in unisensory areas, and the putative functional connections among different cortical areas subserving multisensory interactions. The emerging view is that NIBS is an essential tool available to neuroscientists seeking for causal relationships between a given area or network and multisensory processes. With its already large and fast increasing usage, future work using NIBS in isolation, as well as in conjunction with different neuroimaging techniques, could substantially improve our understanding of multisensory processing in the human brain

    Crossmodal Illusions in Neurorehabilitation

    Get PDF
    In everyday life, many diverse bits of information, simultaneously derived from the different sensory channels, converge into discrete brain areas, and are ultimately synthetized into unified percepts. Such a multisensory integration can dramatically alter the phenomenal experience of both environmental events and our own body. Crossmodal illusions are one intriguing product of multisensory integration. This review describes and discusses the main clinical applications of the most known crossmodal illusions in rehabilitation settings. We consider evidence highlighting the contribution of crossmodal illusions to restore, at least in part, defective mechanisms underlying a number of disorders of body representation related to pain, sensory, and motor impairments in neuropsychological and neurological diseases, and their use for improving neuroprosthetics. This line of research is enriching our understanding of the relationships between multisensory functions and the pathophysiological mechanisms at the basis of a number of brain disorders. The review illustrates the potential of crossmodal illusions for restoring disarranged spatial and body representations, and, in turn, different pathological symptoms
    corecore